<name>

Class: Honors Geometry

Date: 9/14/06

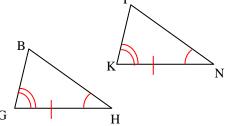
Topic: Lesson 4-3 (Triangle Congruence: ASA & AAS)

Postulate 4-3

Angle-Side-Angle (ASA) Postulate

If $2 \angle' s$ & incl side of 1Δ are \cong to the $2 \angle' s$ & incl side of another, the $2\Delta S$ are \cong .

 $\triangle ABC \cong \triangle PQR$

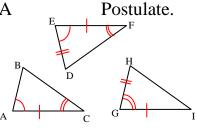


Example

Pg 197, #2

Name 2 Δ 's that are \cong by the ASA

 $\angle BAC \cong \angle DEF$ $\overline{AC} \cong \overline{EF}$ $\angle ACB \cong \angle EFD$ So $\triangle ACB \cong \triangle EFD$ by ASA



Example

Pg 197, #8

Developing a proof: complete the proof by filling in blanks.

Given: $\angle LKM \cong \angle JKM$

 $\angle LMK \cong \angle JMK$

Prove: $\Delta LKM \cong \Delta JKM$

Proof: $\angle LKM \cong \angle JKM$

 $\angle LMK \cong \angle JMK$

 $\overline{KM} \cong \overline{KM}$

Given

Given

a) Reflexive POC b) ASA

 $\Delta LKM \cong \Delta JKM$

<name>

Class: Honors Geometry

Date: 9/14/06

Topic: Lesson 4-3 (Triangle Congruence: ASA & AAS)

Theorem 4-2

Angle-Angle-Side (AAS) Theorem

If $2 \angle' s$ & a non-incl side of 1Δ are \cong to $2 \angle' s$ & the corresponding non-incl side of another Δ , then the $2 \Delta s$ are \cong .

Example

Pg. 197 #10

Tell whether AAS or ASA can be applied directly to prove the $\Delta S \cong$. If not, write *not possible*.

ASA; following is the reasoning...

$$\angle CBD \cong \angle ADB$$
 If || lines then alt. Int. \angle 's are \cong

$$\overline{BD} \cong \overline{BD}$$
 Reflexive POC

$$\angle CDB \cong \angle ABD$$
 If || lines then alt. Int. $\angle 's$ are \cong

Example

Not in the book

Tell whether AAS or ASA can be applied directly to prove the $\Delta s \cong$. If not, write *not possible*.

AAS; following is the reasoning...

$$\angle E \cong \angle G$$
 Given

$$\angle EHF \cong \angle GFH$$
 If \parallel lines then alt. Int. \angle 's are \cong

$$\overline{FH} \cong \overline{HF}$$
 Reflexive POC